Skip to main content

Synchotron Self-Compton Radiation and some multithreading

  Progress has been made since the last post.  My modifications to boxfit now allow for basic Inverse-Compton radiation.  Here is a reference spectrum generated using the shipped settings.  The current method uses the definition of the inverse compton parameter (Y) laid out in Nakar et. al. Apj, 703, 675, and functions for the slow cooling regime mainly, with placeholders in the other regimes.
The orange is the SSC enabled spectrum, and it is behaving exactly as expected above the cooling break.

  The Next step is to get the proper parameterization for Y based on Nakar et. al. as well as Beniamini et al. MNRAS, 454, 1073B.  This includes the Klein-Nishina effect at higher frequencies.  I do worry a bit about how computationally expensive this will be, but I can't really speak to optimizations until I have a better idea of what the algorithm is going to look like.

  I am still working on the CUDA port, but I haven't had much time to think about how I want to change the data structures to fit within what CUDA can work with.  I have started playing with gcc's built-in multithreading schemes.  The -ftree-parallelize-loops= option has given some modest but tangible improvements over single threaded compilation.  I am also working to write it with OpenMP, but just parallelizing the loops seems to slow things down a bit, probably related to cacheline refreshes.  I am going to try with SIMD instructions in the next couple of days, as well as see if I can tweak how the code runs to avoid memory hiccups and hopefully provide an additional speedup, as OpenMP will fully utilize the cores of the machine, unlike g++.  I am also thinking about replacing CUDA with OpenACC for the initial port as that is largely manufacturer agnostic and a bit simpler to code in than OpenCL. 

Comments

Popular posts from this blog

Update: A D'Oh moment, and the curious case of static member classes.

     So last night, I was laying in bed thinking about the myriad of issues I had been having with functions pointing to member objects and multiple threads trying to assign values to those objects, when I realized something.  The part I was attempting to parallelize was a waste because there were multiple serial functions embedded in them.  What actually made sense was to move further into the code and instead of trying to parallelize the flux calculation in time, it made more sense to parallelize the spatial calculations because those do not have the same dependencies on objects.      This morning has consisted of implementing that code, and tagging the required functions as device runnable code, going back and catching typos, and then relocating the kernel because __global__ functions cannot be called as class types.  I was feeling great about this and was quite confident as I keyed in the make arguments, when... Whoops......

More adventures in Inverse-Compton

Had to do some back pedaling on implementing Inverse-Compton.  The Klein-Nishina effects are not as important for most observations, and there was some strangeness in the fast cooling regime.   The main issue was that the cooling frequency was not suppressed as one would expect and this was due to stupidity in the way I originally implemented it.  Here are some new results for physical parameters E = 10^52 ergs, p=2.5, theta_0= 0.2 rad, theta_0bs=0, n= 5, e_e=1, e_b = 0.01, and ksi_n=1.  We tested in the fast cooling regime using the standard expression for Y (Full derivation to follow) and in the slow cooling regime using an approximation of the formula derived in Beniamini et. al. 2015 (arxiv:1504.04833v2). The red line is the minimum accelerated electron emitted frequency, the dashed line is the IC suppressed cooling frequency, and the blue line is the un-suppressed cooling frequency.  We originally had a debate about whether the fast cooling spect...